Интерферометр для измерения линейных перемещений микрообъектов MDMI-2

Отличительные особенности

- Разрешение до 0,07 нм;
- Диаметр измерительного пучка лучей 5 мкм;
- Скорость перемещения образца до 1,5 мм/с;
- Диапазон измеряемых перемещений ±50 мкм;
- Число измерений в секунду до 6000;
- Малые габариты;
- Автоматическая настройка;
- Автоматическая регистрация максимальной скорости перемещения;
- Интерфейс связи USB 1.1
- Питание 5В USB

Применение

Метрология, нанотехнологии, точное приборостроение, микробиология, контроль MEMS и MOEMS и др.

Описание

Интерферометр MDMI-2 — это высокочувствительный малогабаритный измеритель относительного линейного перемещения микрообъектов, обладающий разрешением до 0,07 нм. MDMI-2 выполняет 6000 измерений в секунду, что позволяет следить за перемещениями объекта двигающегося со скоростью до 1,5 мм/с. Интерферометр автоматически отслеживает изменение оптической длины пути измерительного пучка с момента включения и передаёт информацию изменениях по запросу с помощью интерфейса USB. Оптическая схема MDMI-2 представляет собой интерферометр Майкельсона, в измерительное плечо которого установлен объектив, фокусирующий излучение на измеряемый объект. В качестве источника излучения в MDMI-2 используется встроенный лазерный диод. Диапазон измеряемых перемещений зависит от фокусного расстояния установленного объектива.

Интерферометр MDMI-2 выпускается в различных конфигурациях для измерения перемещений объектов с различным коэффициентом отражения — от прозрачных жидкостей до металлических поверхностей. Принята следующая маркировка интерферометров серии MDMI-2:

MDMI-2-xx-yy-zz,

где хх – фокусное расстояние объектива, мм;

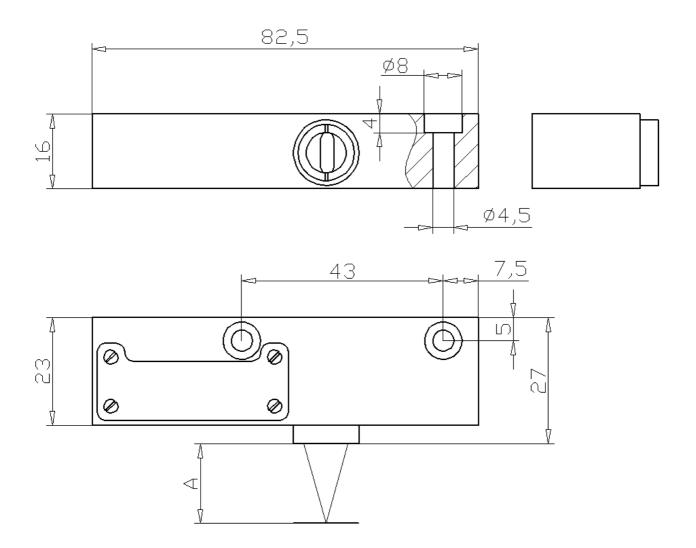
уу – коэффициент отражения исследуемой поверхности, %;

zz – рабочая длина волны, нм.

Технические характеристики

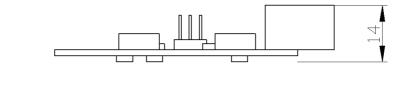
Технические характеристики для MDMI-2-20-04-808, измеренные при температуре 20°C, приведены в таблице 1.

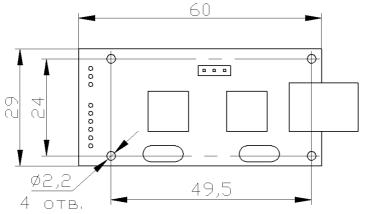
Таблица 1

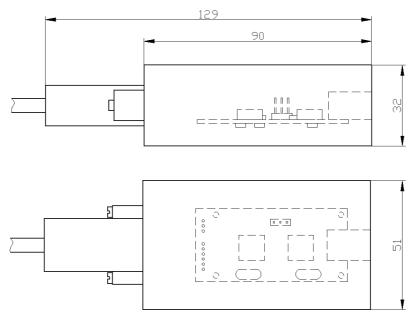

Наименование	Единица измерения	Значение		
		Макс.	Тип.	Мин.
Пороговая чувствительность, при нулевой разности хода лучей	НМ	-	-	0,07
Число измерений в секунду	шт/с	8000	6000	-
Скорость перемещения образца	мм/с	1,5	-	0
Диапазон перемещения относительно плоскости равной оптической разности хода	МКМ	50	-	-50
Задержка получения информации о положении с момента измерения по интерфейсу USB 1.1	мс	10	8	-
Задержка получения информации о положении с момента измерения по встроенному интерфейсу SPI	МС	0,6	-	-
Мощность встроенного источника лазерного излучения	мВт	15	-	1
Длина волны встроенного лазерного диода	НМ	818	808	798
Фокусное расстояние объектива	ММ	-	20	-
Рабочее расстояние (размер А)	ММ	-	17	-
Напряжение питания	В	5,5	5	4,5
Потребляемый ток	А	0,2	0,15	-
Температурный коэффициент линейного расширения корпуса интерферометра	1/K	-	13x10 ⁻⁶	-
Диаметр перетяжки измерительного пучка	МКМ	-	5	-
Габаритные размеры	ММ	-	16x27x83	-
Коэффициент отражения измеряемого образца	%	8	4	2

Рекомендации по использованию

При работе с датчиком MDMI-2 необходимо следовать следующим рекомендациям:


- 1. Для повышения точности измерения нужно достичь температурной стабилизации всех элементов измерительной установки. Необходимо учитывать, что в MDMI-2 есть свой источник тепла это приёмник излучения и лазерный диод. Время температурной стабилизации составляет около 1 часа.
- 2. Принимайте меры по закреплению провода камеры линейки фотоприёмников к неподвижному основанию, поскольку он является проводником механических колебаний.
- 3. Соединяйте корпус интерферометра MDMI-2 и металлическую конструкцию, на которую он установлен, с металлическим корпусом персонального компьютера для избежания повреждения блока обработки сигналов и лазерного излучателя статическими разрядами.


Габаритные и установочные размеры интерферометра


Размер А – рабочее расстояние.

Габаритные размеры платы обработки сигналов

Габаритные размеры корпуса блока обработки сигналов

E-mail: vlt@inoptel.com